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ON AN INVERSE PROBLEM
FOR NONNEGATIVE AND EVENTUALLY
NONNEGATIVE MATRICES'

BY
SHMUEL FRIEDLAND

ABSTRACT

Let o ={A,,- - -, A,} CC. We discuss conditions for which o is the spectrum of a
nonnegative or eventually nonnegative matrix. This brings us to study rational
functions with nonnegative Maclaurin coefficients. A conjecture for special sets
o is stated and some evidence in support of this conjecture is given.

1. Introduction

The classical Perron-Frobenius theorem [10, 3] on the spectrum of nonnega-
tive matrices stimulated an enormous number of papers on the one hand, and
was applied successfully in various fields of pure and applied mathematics on the
other hand. In recent years the following inverse problem became of interest:
Give a necessary and sufficient condition for a set o of n complex numbers
{As,- -+, M.} to be a spectrum of a nonnegative n X n matrix A. See [1], [2], [5],
[7-9],[11],[13].If A = 0 then A* = 0 and the obvious necessary conditions are

.1 > At =0,
=1

for k =1,2,---. In the first paper on the subject by Suleimanova [13] it was
stated and proved (quite loosely) that if the set o is real and contains exactly one
positive number then the condition =/, A; =0 is a necessary and sufficient
condition for o to be the spectrum of a nonnegative matrix. Note that in this case
the inequality (1.1) for k =1 implies immediately (1.1) for k >1.

In the general case, however, the conditions (1.1) for k =1,2, - are not
sufficient for o to be a spectrum of A = 0. This is true even in cases that o is real
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and contains two positive numbers [11]. Indeed, take for example o =
{1,1,-3, -3 -3} If o is the spectrum of A Z 0, then according to the theorem of
Frobenius, A should be reducible. So o can be split into two disjoint sets
o =0, U o, where each o; satisfies (1.1). This is clearly impossible. The
Suleimanova result was reproved and extended by [7-9], [1], [5] and [11] to more
general sufficient conditions for a real set o to be a spectrum of nonnegative
(positive) matrices. Recently, Fiedler showed that practically all known sufficient
conditions for a real o are also sufficient for the existence of a nonnegative
(positive) symmetric matrix with these eigenvalues.

It is interesting to note that all known sufficient conditions on o require o to
be real. We conjecture that Suleimanova’s result holds without assumptions that
o is real.

CoNiECTURE.  Leto ={Ay,- -, A,} be a set of n complex numbers. Assume that
o satisfies the conditions (1.1) for k =1,2,---. If o contains exactly one positive
number then o is the spectrum of some nonnegative n X n matrix.

In support of this conjecture we prove:

THEOREM 7. Leta ={A,, -, A.} be a set of n complex numbers. Assume that
o satisfies the conditions (1.1) for k = M. Suppose that o contains exactly one
positive number. Then o is the spectrum of some real n X n matrix A, such that
A“=0 fork = N.

Such a matrix A is called eventually nonnegative. In particular Theorem 7
implies the validity of our conjecture if we assume in addition that all | A; | are
equal. We now describe briefly the organization of the paper. In the second
section we give a refined version of the classical Pringsheim theorem for rational
functions. This theorem is our main tool in investigating sets satisfying the
conditions (1.1). In particular we note that the conditions (1.1) for k = M imply
that max;=, | A; | belongs to o. In Section 3 we consider a set o satisfying the
conditions (1.1) and which contains exactly one or two distinct positive numbers.
In the last section we apply our result to the inverse eigenvalue problem for
nonnegative and eventually nonnegative matrices. We also give “‘natural”
sufficient conditions for a set o CC to be a spectrum of a nonnegative matrix.
These conditions include the Suleimanova condition.

2. Rational functions with nonnegative Maclaurin coefficients

Let o ={Ay, -+, A} be a set of n (not necessarily distinct) points in the
complex plane C. The k-th moment s, (o) of o is defined to be
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(2.1) sc(0) =2, A
=1
for k =0,1,---. Indeed if u, is a nonnegative measure concentrated at the
points Ay, -+, A, 1€
(22) o =2, 8(z = A)

i=1

where 8(z — A) is the Dirac measure, then

(2.3) sc(o) = f z%du,.

The sums s, (o) are generated by the following rational function:

w

@.4) AOEDN(EPEIREDWACED

k=0

Let f(z) be an analytic function in the neighbourhood of the origin. Then

2.5) f(z)= '20 az*.

Assume that the radius of convergence R = R(f) of this power series is positive
and finite. The classical theorem of Pringsheim states that if a, =0, for
k=0,1,---, then R is a singular point of f. Since altering a finite number of
terms in the series (2.5) does not change the radius of convergence, Pringsheim’s
theorem holds if we assume that a, = 0 for k = M. Consider the function f,. It is
clear that the radius of convergence of f, is r(o)™' where

(2.6) r(o) = max [AJ.

We call r(o) the radius of o. Assume that s.(0)=0 for k =2 M. From the
theorem of Pringsheim we deduce that z = r(o)™' is a singular point of f,. Thus
we obtain

TheoreM 1. Let o ={A,, -+, A} be a set of n complex numbers. If the
moments s, (a) are real and nonnegative for k = M then the radius of o belongs to
the set 0.

Let f be a rational function. Assume that 0 < R <. Thus on |z|=R, f has
poles. Let p be the maximal order of the poles of fon |z|=R. Wecallz =1 a
p-pole of f if 2 = A is a pole of order p of f.
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DermniTioN 1. The set of triples «(f) ={(A,, i, p), - -, (Au by p) is called
the principal part of a rational f if the function f— 2", (1 — A;z)™® does not
have poles of order greater than or equal to p(p = 1) on |z | = R(f) > 0. Here

(2.?) 3;750, f/\} Jil: R(f), /\,# Ak, for }}é k,j,k =1, n.

Normalize for the sake of convenience:

(2.8) R(f)=1.

In what follows we shall be using frequently the function e

2mix

mostly where
x =m or x = n. To simplify the notation, we introduce the convention:

(*) e(x) — e2m‘x, g - e21ri/m, W= ezm/n'

We now give a refined version of Pringsheim’s theorem for rational functions
which is needed in the sequel.

THEOREM 2. Let f be a rational function having power series (2.5) and
normalized by the condition (2.8). Let {(Ai,1,,p), "+, (A, L., p) be the principal
part of f. Assume that a. =0 for k 2 M. Then the point z =1 appears in the
principal part of f. Let A, =1. Then I, > 0. Moreover if n =2 then

(2.9) lL=l,j=2"n

Assume furthermore that

2.10) [Ll=56,j=2,,m, lLl<l,j=m+1,--- n

Then Ay, - - -, A, are the m-th roots of unity. Moreover, after a suitable rearrange-
ment of Ay, +, A, we have

(2.11) =0T b= =1 m

for some integer q. Finally, the principal part 7 (f) is invariant under the rotation by
27w /m. That is if (A, Lp)€ w(f) then (AL, % p)€E w(f).

Proor oF THEOREM 2. We may assume that all a, are nonnegative. Otherwise
consider the rational function f, = f — Z¥., aiz*. Clearly #(f,) = 7 (f) and f, has
nonnegative Maclaurin coefficients. By the Pringsheim theorem z = 1 is a pole of
f. Let p be the order of the pole at z =1 = A,. It is a standard fact that if z = A,
[A]=1is another g-pole of f then g = p. This follows from the inequality

2.12) A-lzylf)=a-[zlyf(lz])
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for |z|<1. As z=11s a p-pole and a. =0 we deduce
(2.13) L=1lim(1-r)f(r), as r—1".
Let A, |A;] =1 be a p-pole of f. Since

(2.14) [[|=limQ-r)|[f(rA)|, as r—1"

from (2.12) we deduce the inequality (2.9). Assume now that (2.10) hoids and
m 2 2. Put

(2.15) =mb, ml=1j=1--m

As all a. are real we have the identity f(2)=m, thus by the Schwarz
reflexion principle

(2.16) s Lp)En(f), if (A p)E 7(f).

Consider the functton
@17)  g(:)=21(z)= #f(R2) - nf(he)= X 21~ RelnA}haiz*

Clearly g(z) is a rational function, analytic in the unit disc and g may have
singularities on |z [ =1 of order not exceeding p. Moreover g has nonnegative
power coefficients. The coefficient of (1 — z)” appearing in g(z)is 21, — m; [ — 7,;
= (). According to what we showed above g does not have p-poles on the unit
circle. This means that the p-pole at z = A, 1 = k = n, has to disappear in g. Let
first 1 = k = m. Then (1 — A,.z)® appears in f with the coefficient 21,. As |k | =1,
the p-pole at z = A, would disappear in g(z) if only

(2.18) A = Ay, A = Ay, mil, + 7, = 21,

where 1 = r, r, = m. Let A; # 1 be fixed. Then r, # r,. Thus if k varies from 1 tom
r, also obtains all the values between 1 and m. This means that the set
{A, -+, An} is a multiplicative group of order m. So we may assume the
normalization A; ="', j=1,---,m, as A,,--, A, are distinct.

Consider the last equality in (2.18). As 2, = 2| L | =l |+|1,] = 2], we deduce

(2.19) NiMn = M MM = M.

Thus {n,, - - -, 9.} is also a multiplicative group. Furthermore, the map A; = 7, is
a homomorphism. So 7; = 74 and 5, = ¢? for some 0 =g =m — 1. It is left to
prove that if (A, [, p) € w(f) then (AL I p) € w(f). Consider the function
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(2.20) h(z)=2f(z) - {*f(¢z) - {*f(L2).

As before we deduce that g(z) does not have p-poles on |z | = 1. So all the poles
of f(z) of order p on the unit circle cancel. This is equivalent to the fact that
(AL L% pYe w(f) if (A, L p)€ w(f). The proof of the theorem is completed.

3. Special sets with nonnegative moments
Let o ={A,,* -, A.}. The principal part 7 (o) of o is defined as
3.1 m(o)=oN{z, |z|=r(a)}

The set o is called simple if A;# A, for j# k.

DEerINITION 2. A set o ={A,, -, A.} is called a Frobenius set if
i) r(o)>0,
() w(a)={r(a),fr(a), -, " 'r(a)} for some 1=m = n,

(iii) the set o isinvariant under the rotation by an angle 27 /m, i.e. {o = 0.

The reason we called such a set a Frobenius set is that by the Frobenius
theorem the spectral set of a nonnegative irreducible matrix is a Frobenius set.
For r Z 0 denote by o, the set

(3.2) o.=0N{z,|z|=r}
Note that ¢, may be empty.

THEOREM 3. Let o = {Ay, -+, A.} be a set of n complex numbers. Assume that
eventually all the moments of o are nonnegative, i.e. s,(a)Z0 fork =z M. If o
contains exactly one positive number then o is a Frobenius set.

Proor. Consider the function f, defined by (2.4). From the Pringsheim
theorem we deduce that r(o) € . As ¢ contains exactly one positive number,
r(g)>0. Let

n=r(@)= A== = A > = ] = = A
(3.3) S Sn =A== ], mo=n
Thus 7(o) ={A,,* -+, A,}. Note that w(o) may contain the same number A

several times.

Let w(fo)={(ww. 1, 1), - = =, (thmy L, 1)}. Here w, # i for k # j, [ is the multiplic-
ity of w; in w(o). Thus ;= 1. The assumptions of the theorem imply that
wi=r(o) and I, =1. By Theorem 2, =1, j=2,---.m and u; = 'r(o),
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j=1,-++, m. This means that m = m, and 7 (o) ={r(a), {r(o), -, (" 'r(a)}.
Assume now that r,>0, otherwise the theorem holds trivially. Let o, =
Uos,=,0.. Denote

(3-4) fo=fn= ‘ZO bez*.
Clearly
(3.5) fi=1, 'i (1= (o)z)".
As
&S ok |0 for k#0 (modm),
(3.6) ,Z:, ¢t = {m for k=0 (modm).

We realize that b, are real and b, =0 for k ZM and k#0 (modm). As o
contains exactly one positive number, namely r(a), 7(02) = {Am1, " * *, Amy} doES
not contain r.. Let

(3.7) g=ftmA(l-ryz"y'=Y cz*
k=0

Clearly ¢, = b, for k0 (mod m), ¢, = b, + mAr; for k =0 (mod m). Choose A
to be a sufficiently large positive number. Then we have that ¢, 20 for k =2 M.
We apply now Theorem 2. Clearly ({'"'r,, A, 1) € m(g), where A;= A for
j=1,---,m. As r,& w(o;) we deduce that A, = A. According to Theorem 2
A;=A, j=2,---, m. This means that {'"'r, & w(0o;) for j = 1,-- -, m. Moreover
w(g) is invariant under the rotation by an angle 2z/m. Therefore
Aty 5 Amgt = {Amps 1y * 5 Amg}. Thus

™y

(3.8) > At=0, for k#0 (modm).

j=mi+l

That is, b, =0 for k #0 (mod m). Let o = U4, 5,0, Considering the function
f-, we prove in the same manner as for f,, that {A,,.., "+, A} is invariant under
the rotation by an angle 27/m. Continuing in the same way we obtain that
{o, = o, for any r = 1. So {o = o and o is a Frobenius set. The proof of the
theorem is completed.

CoroLLARY 1. Let o ={Ai,-*-,A.} be a set of n points on the unit circle.
Assume that 5, (6) Z 0, for k = M. If the point z = 1 appears only once in o then o
is a set of exactly n roots of unity.



50 S. FRIEDLAND Israel J. Math.

In case that A,,---, A, are algebraic, i.e. each of the A; is some root of unity,
Corollary 1 was proved independently by M. Newman [6]. Another proof of
Corollary 1 was suggested by A. Selberg [12].

It is trivial that Theorem 3 does not hold if we relax the assumption that o
contains exactly one positive number. Indeed let o = {1,1,¢%, e} where 6 is
real. Of course, s (o) =2(1 +cos k8) = 0, but ¢” need not be any root of unity.
We now examine a set o satisfying the conditions (1.1) on assumption that o
contains exactly two distinct positive numbers. To do so we need the following
theorem.

THEOREM 4. Let f be a rational function having power series (2.5) and
normalized by the condition (2.8). Let {(A:, 1,,p), ", (A L., p)} be the principal
part of f. Assume that A, =1, =1 and all other [; are positive integers. Suppose that
for k =z M, a, are real and a. =0 for k#0 (mod m), when m > 1. Assume that
7 (f) is completely uninvariant under the rotation by an angle 27/m, i.e., if A is a
p-pole on |z|=1then A{% is not a p-pole for some 1=q=m ~ 1. Thenl, =1 for
2=j=n. Let m' be the greatest divisor of m such that all m'-th roots of unity are
p-poles of f. Letm” = m/[m’'> 1. Then there exists r co-prime with m" such that

(i) ifm" iseventhentheseto ={A,, -, A} isequal to the set o, which consists
of all m'r-roots of unity,

(i) if m" is odd then either ¢ = o, or o = 0, U 0, where o is of the form

w1 2%k -1, j\1
¢ o:=" 0 e+ S5 ok )

q.kj=1

Proor. We will prove the theorem by induction on m. We divide our proof
into 4 steps.
(1) Let m =2. Consider the function

(3.10) £(2)= £2) = (= 2)= 3, 2amaz™

Thus 2az.1 2 0 for k = M. Moreover, from the assumption that if A is a p-pole
— A is not a p-pole of f we deduce that

7(f)={1L1p), (=1, =1,p), (A, ,p), (= As, = Lo, p)s s (Ans b ),
(3.11) (= Aw = L, p)}

As ;2 1, from Theorem 2 we deduce that [, = 1 forj =2, - - -, n. Furthermore

7 (f) = u (e(j/2n), e(i12), p),
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that is, in the notation of Theorem 2, g = n. As the coefficient of (1~ Aw2) ™ in f
is positive we deduce that after a suitable rearrangement Ay = w* ™', k =1,---, n.
Since — 1isnot a p-pole of f, n is odd. The theorem is established in this case.

(ii) Let m >2 be a prime. We claim that {? isnot a p-pole for IS qg=m ~ 1.
Otherwise consider the function

g(z)=2f(z)—f({"z)—f({—"z)=§ 2(1 - cos 2mgk /m)z*

(3.12) )
= 2 bkzk.
k=0

As a, are real for k = M we have that {7 is also a p-pole of f. So ({*%, [p)€E
a(f). Obviously b, =0 for k = M. The coefficient of (1—-2z)™ is 2(1~[)=0.
According to Theorem 2, [ = 1 and g(z) does not have p-poles on |z|= 1. As
(g, m)=1, since m is prime, we deduce that (f) is invariant under the rotation
by an angle 27/m. This contradicts the assumption of the theorem. Let
(A, L p) € 7 (f) and assume that A # 1. By the orbit or (A) we denote all the points
of the form A¢’, 1 =j = m — 1 such that A’ is a p-pole of f. We claim that each
I'=1 and either or (1) is empty or contains exactly m —2 points. Assume first
that for some 1=j=m —1, AL Z or(A). So A{*'& or(A). Consider the func-
tion

(3.13) h(z)=2f(z)—f()\z)—f(Xz)=?;) az*

where ¢, are real and ¢, = 0 for k#0 (mod m). Note that {* is not a p-pole of
h(z). Moreover, the coefficient of (1—2z)® is 2(1—1)=0. As in the proof of
Theorem 3 consider the function

(3.14) h(z)=h(z)+ mPA(1-2z")* = 2 diz*

where A is a positive sufficiently large number. So di Z 0 for k = M. Clearly
(3.15) (1, A+2(1-1),p), ({7, A, p)E m(h)

According to Theorem 2 A +2(1—-1)= A, so | = 1. Furthermore, since A >,
and m is prime, from Theorem 2 we deduce ({**, A,p)E m(h)), 1=k =m. So
or(A)=(. Suppose now that we do not have 1=j=m —1 such that
AL™ & or (A). Then we claim there exists 1 = ¢ = m — 1 such that A{*& or (A) but
AL* € or(A). Indeed, according to the assumptions there exists j, 1= j=m ~1
such that A{'& or(A). If A{¥ € or(A) then g = j. Otherwise, let3=r=m —1be
the first integer such that u = A7 €or(A). If such r does not exist clearly
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AL*'€ or (A) contrary to what we assumed. If r is even then take q = jr/2. If r is
odd let g = j(r +1)/2. We claim that A{* € or(A). Otherwise ul™ & or(u).
According to what we just proved or () is empty. This contradicts the fact that A
is a p-pole of f Note that since m is odd A{*# A. Recall that (Al p),
(AL, I',p)E m(f) and AL*@ or(A), AL*& or(A). Consider the function

(3.16) ¢(2)=2f(2)+f(A§"2)+f(Xf"Z)=?.: azt.
=0
Again for k 2 M, ax are real and a, =0 for k#0 (mod m). We have

(1,2,p), ({*, 1+ 1", p)E w (o).

Consider the function

(3.17) <p1(z)=<p(z)+m"A(1—z"')"=§0 B.z*

where A is a sufficiently large positive number. So B, =0 for k = M. Thus
(1,2+A,p), (" 1+1I'"+A,p)Ew(p1). As LI'=1, according to Theorem 2
{ = 1" =1. This establishes our assertion that [; = 1 for 2 = j = n. Moreover, since
m is prime we must have ({,2+A,p)E w(¢p,) for 1=j=m—1. Thus
AM'€or(A) for I=j=m—1 and j# q, i.e. or(A) contains m —2 points. We
examine two cases.

(a) For any p-pole A of f or(A) is empty. Let

(318) W)= ()~ & f@'2) = 3 nat

According to the assumptions of the theorem r, 20 for k = M. As or(A) is
empty we have

r={(12=L ), (6-Lp) (e -Lp)

m—1 1 meo1 1
(/\m m sp)a (Anga - ;7 p)a Y (An{ ’ m’p>}

According to Theorem 2 A, = "' for k =1,---, n after a suitable rearrange-
ment of Ay, - -+, A,.. Clearly (n, m) = 1. According to the notation of the theorem
o =0, where r=n and m'=1.

(b) Let o' ={u1, -, pt.}, r 2 1, such that each y; is not a p-pole of f but w;¢*
is a p-pole of f for 1 = k = m — 1. Furthermore, let 0" ={A, =1, -, A,} be the

(3.19)
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rest of the p-poles which are not of the form u;{*. Then if A € o” the orbit of A is
empty. Let

(3.20) f)= 1)~ & (1-ug*2)" = 3 du”

] 1

Again, for k 2 M 4, are real and 4. 20 for k#0 (mod m). We also have

(3.21) () ={(L.1p) (Aa1,p), (w1, = L)+ (e = 1, p)}.

Furthermore the orbits of each A; and u. are empty. Let
. . 1 & . o
(3.22) b(2)=f2)-— 2 f(0'z)= 2 Azt
ji=1 k=0
As for ¢ £, =0 for k = M. Now

@) ={(1LL0) (a=ap ) (6= ) (W2 )

(3.23) <A,§, - ml p), e (A,{”“, —L, p), (;L., —mT—I, p),

m

1 mer LY L _m-1\ mt 1
(i L) (i) - 2L o (g L)

According to Theorem 2 s=r and o"={1,£%---, 6 "}, £E=¢e(1/2r), o' =
{¢ -, &77"}. The theorem is verified in this case (m’'=1).

(iii) Let m be not a prime and suppose that m’ = 1. We claim that the orbit of
A =1 1s empty. Assume to the contrary that ({% [ p)€ = (f). Consider the
function g(z) defined by (3.12). As before we conclude that [ =1 and n(f) is
invariant under the rotation by an angle 2mq/m. Let (g, m)=q', 1=q'<m,
Then all m/q' roots of unity are p-poles of f, contrary to the assumption m' = 1,
Let m = mym. where 1 <m,, m,. Clearly a, 20 for k#0 (modm.,). Let us
decompose 7(f) to 7, U m; where 7, is invariant under the rotation by 27/m,
and m, is completely uninvariant under the rotation. Obviously =, # .

(a) Assume first that m is even. Then we choose m, to be even. By the
induction hypothesis

(3.24) m={(L1Lp) (n1.p)-- (27" Lp)}, n=e(l/r).

As m’'=1 we deduce (r,m)=1. Suppose that =, # &. Thus
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m = {(Vl’ b, p)»(Vng’ by, p)7 B (Vl{é"z_la b, P)’ R

3. 1
(3.25) o taP)y- s (LT o p)y o= e(lfma),

where 21, 1=j=s. Let

(3.26) 6(z)=mi* Y, f(Liz"™) = """ Y Gpuz*
j=1 k=0
where a.,. are real and a@., =0 for k#0 (modm,) if k = M. Let

(327) 7T(0) = {(1’ 1’ p)’ (/“47 P2, P), T (.uu’ Pus p)}

Ifu =75/, 1=j=r~1theneitherp =1o0rp = myt +lincase that vi2=n' If u
is not r-th root of unity then u = »¢2 and p = m,t. Let

(3.28) 9(z) = 0,(z)+ 0:(2)

where 6,(z) satisfies the assumptions of the theorem and (8-) is invariant under
the rotation of 27/m,. Suppose that u = n’, 1=j=r—-1and p = myt +1. As
=1 and m,=2 from the induction hypothesis for = (6:;) we deduce that
(u, p', p) € m(6,), where either p’'= m,t, or p'= myt +1. The invariance of
m(8,) implies that (vi'2{l,p’,p) € m, 1 =j = m,, {, = e(1/m,). From the induc-
tion hypothesis for 7 (8,) we deduce that p’ = p — 1 = m,# > 1. This means that
vl =vie for any 1=j=m,—1. So &l are p-poles of f for 1=j=m,
contrary to the uninvariance of 7 (f). Suppose that vz is not r-th root of unity. If
p' > 1 then we will have a contradiction as before. Assume that all p’ are equal to
1.Thus m;=2, =landp'=p~1.If vifl = viforany 1=j=m,-1 we will
have a contradiction as before. So for some j, 1=j=m —1, vi{! = n*. This
happens only for one j, otherwise we would get that or (1) # &. Therefore we
conclude that the orbit of v, contains exactly m —2 points. Furthermore, if
n'&or(w), 1=k =s, then the orbit of n’ may contain roots of unity. Since
or (1) = P we deduce that or (') = &. Thus we arrived at the situation described
in (ii b). As in (ii b) we deduce that o = 01 U o, with m’ = 1. Since m is even and
r is odd ((m, r) = 1) it is easy to show that /, > 1 contrary to our assumptions. So
m, = and o = o, in the notation of the theorem.

(b) Let m be odd. So m, = 3. If =, is of the form (3.24) as in (iii a) we deduce
that 7, = & and the theorem is proved. Assume that =, = 7, U 7, where m; is of
the form (3.24) and

(3.29) T = "Ul (e(zﬁ;l+—L>, 1,p>.

kj=1 2r m;
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Asm’'=1,(r,m)=1.If w, = J we finished the proof. Let =, # . Then =, is of
the form (3.25). Consider 8(z) defined by (3.26). Thus 7(8) is given by (3.27). If
@ =mn' then either p=1 or p=m,t +1 in case that vJz=7n' If p = £
(¢ = e(1/2r)) then either p = m,— 1 or p = my(t + 1) — 1 in case that vz = {77,
For other u which equal v, p = myt. As in (iii a) decompose 8 to 8, + 6,. If
t>1 then p'zZp-1zZ2m,—1>m,—1, where (vizp',p)E w(0:). As
(vi2¢i, p',p) € m(8,) for 1=j =m, we conclude that #{’ is a p-pole of f for
1=j = m. This contradicts the uninvariance of 7 (f). Thus each # = 1. Assume
first that p’ = m,+ 1 for some w. In particular v¥2= 7°*. Since 7(#0,) is invariant
under the rotation by 27r/m, and  (f) is uninvariant we must have vi2¢i = £
for some 1=j=m,— 1. Thus ¢ = £€* ", This is impossible as m, is odd. In
the same way we eliminate a possibility that either vi2= ¢¥7' or p' = m,. So we
are left with the possibility that p' = m,— 1. Moreover each orbit of v with
respect to m, contains exactly one point of the form ¢¥7" as (r, m) = 1. Suppose
that there exists a point €' which does not belong to any m, orbit of v So
(&7, p", p) € w(8,) where either p” = m,—1 or p” = m,—2. Thus the m, orbit
of £¥7' contains either £°*7’ or n*. This is impossible since (m,r)=1 and m, is
odd. Thus we proved

77(01) = {(1’ 1, P), " 'a(n'_la 1, P)’ (V;"zv 1, P), T (V;"za 1! P)},
(3'30) 77(02) = {(g’ m;— 17 p)’ T (52'_17 m;— 1,[7), (V;nz, m,— 1’ p)v Tt

(v:"z’ m2 - 1’ p)}a

(3.31) w(6)= UJ (e<31'”—1+i), my— 1,p).

jk=1 2r m;

This establishes the equality o = o, U a:(m' = 1).

(iv) Let m be not a prime and suppose that (¢% [, p) € w(f). By considering
the function g(z) defined in (3.12) we deduce that [ =1 and #(f) is invariant
under the rotation by 277/m, where m, = m/(q, m). Thus all m-th roots of unity
which are p-poles of f constitute a subgroup of order m’ and 7 (f) is invariant
under the rotation by 2#/m’. Let m’'> 1. Consider the function 8(z) given by
(3.26) where m, = m'. The function 8 satisfies the assumptions of step (iii) of our
proof. Using the results of (iii) we easily deduce the theorem. The proof of the
theorem is completed.

From Theorem 3 and 4 we deduce:



56 S. FRIEDLAND Israel J. Math.

THEOREM 5. Let o' ={A,,* -+, A.} be a set of n' complex numbers. Assume
that o' contains exactly two distinct positive numbers r(c') > ro>0. Assume for
convenience that r,=1. Suppose that s.(c)=0 for k = M. Then

()= U r(a)

I1=jsm
Assume thatm > 1. Let 1 <r <r(o'). If o, is not empty then o, is invariant under
the rotation by 27 /m. Let a" be the maximal subset of oy = o' N{z,|z | = 1} which
is invariant under the rotation by 2w/m. Let oy= o Uc" and assume that
o ={A,, -+, A} is not empty, i.e. 1€ 0. Then o is of the form described in
Theorem 4. That is, let m' be the greatest divisor of m such that o is invariant
under the rotation by 2m/m’. Then there exists r, co-prime with m" = m/m', such
that

(i) if m"” is even then o = o,, where o, = U 5z e(j/m'r),

(i) if m" is odd then either o = o\, or o = o, U o, where o, is of the form (3.9).

We conclude this section with an open problem.

ProBLEM. Let o ={A,, - A,} be a simple set in C, i.e. A;# A, for j# k.
Assume that s, (o) 2 0 for kK = M. Find the structure of o.

Theorems 3 and 5 answer our problem in case the set o is concentrated on one
or two circles.
4. Nonnegative and eventually nonnegative matrices

Let A be an n X n real valued matrix. We call A eventually nonnegative if
A* =0 for k =M. Let o ={A,, -+, A.}. Denote by n(o) the k-th symmetric
polynomial in A, - A,

(41) Tk(U)Z Z ’\il‘“)‘ik’ k =1,"', n.

1)< <j=n

We call o a self-conjugate set if 7.(o) are real for 1=k =n.
From the Perron-Frobenius theorem we easily obtain:

Lemma 1. Let A be an eventually nonnegative matrix. If A is not nilpotent
then the spectrum of A is a union of self-conjugate Frobenius sets.

The converse of this lemma is also true.

THEOREM 6. Let o ={A,," -, A} be a union of self-conjugate Frobenius sets.
Then there exists an n X n eventually nonnegative matrix A such that o = o(A).
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Proor. Clearly it is enough to consider the case where o itself is a
self-conjugate Frobenius set. Without any restriction we may assume that
r(o)=1.

(i) Consider first the case where o = {1, A, -, A} and [A;|<1for2=j=n.
Let A(o) be the companion matrix corresponding to o, i.e.,

A(a)=(a;(o)), aj(c)=86,.; for 1=i=n-1,1=j=n,
(4.2) ay(0)= (= 1)1, (o), 1Sj S0,

The assumption that 1€ o implies

n

4.3) Z a,(o)=1.

As o is self conjugate A (o) is real. We have A(o)u = u and A'(g) v = v where
=(1,1,---,1), v =(vy,- - -, v.) and A’ denotes the transposed matrix of A. As

A = 1is a simple eigenvalue of A (o) we may normalize v such that 27, v = n.

Let J be an n X n matrix having every element 1/n.

Consider X = (1 — p)J + pI where I stands for the identity matrix. So Xu = u,
Xv=(01-p)u+pv=w=(w, -, w,). Choose p >0 such that w is positive and
X is nonsingular. Let B = X"'AX. So Bu = u and B'w = w. Clearly o(B) = o.
As |A]<1 for 2=j=n we have B*—> C=(c;)! as k—>», where ¢; =
w;/Zi-, w, >0. Thus B is eventually nonnegative and the theorem is proved.

(i) Let w(a)={1,¢ -+, {™"} where m >1. We may also assume that 0 & g,
since the zero eigenvalue corresponds to zero matrix. So n = mn’ and 7 (o) = 0,
if k#0 (modm). Let o’ ={uy, ", un} be the unique set such that

(4.4) 7o) = tm(o), k=1, n"

Clearly o' is self conjugate and after a suitable rearrangement we have that
wi=1land|py;|<1forl1=j=n'. According to (i) there exists n’ X n' eventually
nonnegative matrix B such that o' = o(B). Let A = (A;)" be the n X n matrix
composed of m? block matrices A; of size n’x n’. Here

45  A,=8., 1sisn-1,1=j=n A, =8B, 1=j=n

In view of (4.4) it is easy to show that o(A) = o. It is enough to note that A™ isa

block diagonal matrix diag {B, - - -, B}. Furthermore A* = (A{’)! where A is

either zero or B"“’ where r(i,j) = k/m. Thus, as B is eventually nonnegative, A

is also eventually nonnegative. The proof of the theorem is completed.
Combining Theorem 3 with Theorem 6 we obtain



58 S. FRIEDLAND Israel J. Math.

THEOREM 7. Leta ={A,, -+, A.} be a set of n complex numbers. Assume that
s (o) 2 0 for k = M. Suppose that o contains exactly one positive number. Then o
is a spectrum of some real n X n matrix A, such that A* =0 for k = N.

In view of Theorem 4 and Lemma 1, Theorem 7 is false if we shall assume that
o contains exactly two distinct positive numbers. From Corollary 1 we deduce

COROLLARY 2. Let g satisfy the assumptions of Theorem 7. If | A;| = r(a) for
1=j=n then o is the spectrum of the matrix A = r(a)P where, for example,
P = (py)! is a permutation matrix p; = 8.1, 1=i,j=n (n+1=1).

We give now a simple condition for a self-conjugate set o to be a spectrum of
a nonnegative matrix, which quite surprisingly was overlooked by other authors.

THEOREM 8. Let o ={A;, -+, A} be a self-conjugate set. Assume that
(4.6) (=D 'n(o)=0, k=1, n
Then o is the spectrum of the companion matrix A (o), (4.2), which is nonnegative.

We claim that Suleimanova’s condition implies (4.6).

Lemma 2. Let {u, "+, pn-1} be nonnegative numbers. Assume that
n—1
Then o = {1, — p1,**, — Ma-1} satisfies the conditions (4.6). Moreover, the com -

panion matrix A (o) is stochastic.
Proor. Let o'={u;, -, un-s}. Then

Tk(a)z(_l)k—l[Tk—l(O")”Tk(O")], 2=k=n-1,
(4.8) -
(@) =1= 3wy m(e) = (= "' 1ai(0),

Taking into account (4.7) it is enough to show

4.9) 7{0") Z 1.1(0") for 1=sk=n-2.

The last inequalities follow directly from the classical Maclaurin inequalities
(4, p. 52]

@100 1U(n-1)z nf(n-1)= [fz/("z_ 1)} sz gy,
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where 7. = 7. (o). Indeed,

S Y
=/ N[/ NG
/(N = G))=e

So(-1)'n(d)z0. As1 € g, 2., a,(c) =1 and thus A (o) is stochastic. End
of Proof.

We conclude our paper with the following observation. Let o be a simple set
such that s, (o) 2 0 for k = M. According to Theorem 4 and Lemma 1 o may not
be a spectrum of any eventually nonnegative matrix. However, the following
result holds:

v

THEOREM 9. Leto ={A,, -, A} be a simple set, i.e. A\; # A, for j# k. Assume
that s,(o)=0 for k = M. Then there exists a cone K with interior such that
A(a)K CK (note that A(c) is real). Furthermore K CR1.

Proor. Without any restriction we may assume that 0Z o (otherwise
consider o after reducing the zero eigenvalue). Let

(411) uk =(Sk(0'),sk+1(0'),' ",Sk.”.—](o')), k =0.
The classical identities
(4.12) Sien(@) =2, (= 1Y 7' 1(0) Scsny(0), k=0
j=1
imply that
4.13) A(o)u* =u*"", k=0.

From the assumptions of the theorem we have that u* Z0for k = M. Let K be a
closure of finite nonnegative combinations of the vectors {u*}s. As K CR%, K is
a cone. It is left to show that K contains n linearly independent vectors.
Consider a matrix B = (b,); with the columns u* u**' --- u**""' So b, =
sivisk-2(0). Let W, = (A7) A straightforward calculation shows that B
W{W,. Thus |B|=|W,[II'-,A%, where |B| stands for the determinant of B.
Since A, #A, for p#q and A,#0 we deduce that |B|#0. Thus

u  u ' - u " are linearly independent and K has interior. The proof of

il

the theorem is completed.
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It is interesting to note that the conditions (4.6) are equivalent to the fact that
u“'" belongs to the cone generated by the vectors u*, u**',---, u**""" in the
case that these vectors are linearly independent.
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